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SUMMARY

Split torque transmissions are attractive alternatives to conventional planetary designs for
helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but
have not been used extensively for lack of experience, especially with obtaining proper load
sharing. Two split torque designs that use different load sharing methods have been studied.
Precise indexing and alignment of the geartrain to produce acceptable load sharing has been
demonstrated. An elastomeric torque splitter that has large torsional compliance and damping
produces even better load sharing while reducing dynamic transmission error and noise. How-
ever, the elastomeric torque splitter as now configured is not capable over the full range of
operating conditions of a fielded system. A thrust balancing load sharing device was evaluated.
Friction forces that oppose the motion of the balance mechanism are significant. A static analy-
sis suggests to increase the helix angle of the input pinion of the thrust balancing design. Also,
dynamic analysis of this design predicts good load sharing and a significant torsional response to
accumulative pitch errors of the gears.

INTRODUCTION

A rotorcraft's performance is greatly influenced by the performance of its drive system.
The next generation of rotorcraft will require drive systems that are lighter, quieter, and more
reliable than the state of the art. These improvements are needed to increase the vehicle's
payload and performance, improve passenger comfort and safety, lower operating costs, and
improve readiness. One of the most important characteristics of the drive system is the gear-
train arrangement. The most common final gear stage for a helicopter main rotor transmission
is a planetary stage which features an output shaft driven by several planets. An advantage of
the planetary stage compared to a simple parallel shaft arrangement is that each planet gear
must transmit only a part of the total torque. This load sharing results in a smaller, lighter
transmission. An alternative to a planetary stage which also transfers power to the output shaft
through multiple power paths is a split torque stage. White (ref. 1) has advocated the use of
split torque geartrains for helicopters, stating that these designs offer the following advantages
over conventional arrangements:



(1) High ratio of speed reduction at the final stage
(2) Reduced number of reduction stages
(3) Lower energy losses
(4) Increased reliability of the separate drive paths
(5) Fewer gears and bearings
(6) Lower noise.

Planetary stages for helicopters have been used, studied, and developed extensively, but
split torque stages have seen little use. A concern for designers of either configuration has been
to ensure that the power is split evenly among the parallel power paths. Several methods to
achieve an equal power split with split torque designs have been proposed (refs. 1 to 5 ). The
relative merits of these and other load sharing methods have yet to be rigorously established. In
this work, two load sharing methods have been studied. One relies on balancing of thrust loads
while the second relies on the torsional compliance of the load paths to achieve good load
sharing. This article presents the methods and results of the study of these load sharing
methods.

SPLIT TORQUE CONCEPTS

In this article, a split torque geartrain refers to any parallel shaft gear arrangement like
the configuration shown in figure 1. This type of arrangement is also sometimes called a split
path design. A helicopter split torque main rotor drive system could consist of a bevel gear
reduction with such a split torque stage. The split torque stage has two speed reduction stages.
The pinion of the first stage engages with two gears. The power is split between these two gears
and carried by two second stage pinions. The two pinions drive the second stage gear which is
referred to as the bull gear. The design is similar to a planetary stage in that the torque is
shared among multiple paths. However, the final gear stage of the split torque design can have
a larger reduction ratio than is possible for a planetary stage. A larger reduction ratio at the
final stage tends to reduce the weight of the gearbox. This feature of the split torque geartrain
makes it an attractive option, especially for helicopters where minimal weight is desired.

For either a planetary or split torque design, the torque carried by each of the multiple
paths should be as near as to equal as possible at any time. This concept is often termed load
sharing. Methods have been studied and developed to achieve good load sharing in planetary
systems. These methods include floating sun gears, flexible mounted ring gears, planet gear
phasing, and planet gear indexing. Also, typically, the planet gear supports are located very
accurately and gear dimensions are held to tight tolerances to ensure good load sharing. In
general, planetary stages of helicopters are considered to have good load sharing, and they have
been used very successfully.

Load sharing is also an important consideration for split torque designs. The load
sharing issue is a result of deviations of the gearbox from ideal geometry and properties. A split
torque arrangement creates a locked geartrain, as represented by the heavy line in figure 1, with
four gear meshes about the locked loop. If all geometry is ideal, then all four gear meshes will be
in contact under a small nominal torque. In practice, the geometry will not be ideal, and three
meshes will be in contact while the fourth mesh location will have some backlash. As more
torque is applied to the system, deformation will occur in the loaded path until the backlash at
the fourth mesh location is eliminated. Since torque was absorbed to eliminate the backlash, the
load sharing will not be equal. The load sharing for this design will also be affected if the
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stiffnesses of the two load paths are not matched. Split torque load sharing methods aim to
either; (1) accommodate deviations from ideal geometry to eliminate the no load backlash, or
(2) minimize the torque required to bring the mesh with backlash into contact.

One proposed method for split torque load sharing makes use of an epicyclic gear stage
(fig. 2). The epicyclic stage has one input member and two output members of equal power.
Any deviations from ideal geometry that could result in unequal load sharing is accommodated
by a small relative rotation of the sun and ring gears. The geartrain of figure 2 has another
degree of freedom compared to that of figure 1. This added degree of freedom guarantees equal
load sharing but adds weight and complexity to the system.

A second proposed method for split torque load sharing makes use of helical gears.
Backlash within the locked loop geartrain can be eliminated by adjusting the axial positions of
helical gears. The axial positions can be adjusted by custom shimming each gearbox at assembly
or by a self adjusting mechanism that moves the helical gears axially in response to thrust loads
induced by torque. Figure 3 is one such self adjusting design.

A third proposed method for split torque load sharing makes use of the compliance
between the splitting mesh gears and the combining mesh pinions. The larger the compliance,
the smaller the torque that will be required to bring a given amount of backlash into contact.
Of course, this compliant member must also be strong enough to carry the required torque at
full power. Also to be considered, the better the precision of the components of the gearbox, the
smaller the backlash that will be present under no load. For this method, there is a trade off
between the compliance required to accommodate backla&sh and the precision required. The
more compliant the load paths, the less precision that is required.

SIKORSKY AIRCRAFT SPLIT PATH TRANSMISSION

Description of Design

A helicopter drive system that includes a split path concept has been designed and
researched by Sikorsky Aircraft Company for the U.S. Army's Advanced Rotorcraft Transmis-
sion (ART) program. The drive system was designed to meet the requirements of an Advanced
Cargo Aircraft heavy lift vehicle with a projected 36 000-kg (80 000-1b) gross weight, 11 000-kg
(25 000-1b) payload, and 500-km (310-mile) mission radius. The goals of the ART program were
to enable the technologies needed for a 10 dB noise reduction and 25 percent weight reduction
compared to a state-of-the-art transmission while obtaining a 5000-hr mean time between
removal reliability. Sikorsky Aircraft projected that the vehicle would be powered by three
engines, have a 33.4-m (110-ft) diameter main rotor and require a main gearbox rated for a limit
of 23 860 kW (32 000 hp). r

A split path design was selected as the best configuration for the Advanced Cargo
Aircraft. This design relies on the compliance of the load paths to obtain good load sharing. [l
The main transmission is illustrated in figure 4. The transmission has three stages of gearing.
The first stage is a spiral bevel gear set. The second stage is a high contact ratio spur mesh
with the power splitting to dual paths. The third and final stage is an 11:1 reduction ratio
double helical mesh where the power is recombined. The weight of this split path design is
significantly influenced by the reduction ratio of the final gear stage as illustrated in figure 5.
For this design, the reduction ratio is limited by the strength of the double helical pinion shafts . -CodIadjor"
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in bending. For the selected 11:1 final stage reduction ratio, the output bull gear has a 1.22-m
(48-in.) pitch diameter. The drive system with this transmission was evaluated to be 23 percent
lighter and to generate 10 dB less noise than a state-of-the-art design while having a 3890-hr
mean time between removal. These drive system performance improvements are a result of the
split path configuration and the following component technologies:

(1) Composite gearbox housing
(2) Composite drive shafts
(3) High speed spring clutch
(4) High hot hardness steel
(5) Angular contact spherical roller bearings
(6) High reduction ratio gear mesh at the output stage
(7) Wide face width, high contact ratio double helical mesh
(8) Topologically ground tooth profiles
(9) Split path load sharing methods.

Items 4 to 9 were selected for study, development, and demonstration in the ART
program. The results of the program have been documented (refs. 6 to 8). The methods and
results of the research of split path load sharing methods are presented and discussed here.

EXPERIMENTAL METHOD

A one-half scale gearbox and test facility were built and tests were conducted to study the
new technologies including split path load sharing. The one-half scale gearbox, shown in figure
6, duplicates the final two stages of the split path gearbox for one engine path but at one half
geometric scale. One half scale was chosen to reduce fabrication costs of the hardware and test
facility. By using the same speed as the full scale gearbox, reducing the power to one eighth,
and scaling the components by one half, the tested components experience the same bending
stresses, Hertz stresses, and deflections as the full scale design. Also, component life and
reliability are the same notwithstanding material allowables based on size effects. However, the
sliding velocities of the one-half scale gear meshes are half of the full scale components. To
study the load sharing, the torques in each of the dual paths, transmission errors, and acoustic
noise were measured and analyzed.

The load sharing concept proposed and tested in the ART project makes use of the
torsional compliance between the splitting mesh gears and the combining mesh pinions. Two
designs using this concept were tested, one with a large torsional compliance and one with a
large torsional stiffness. A compliant device was developed and tested to determine the
capabilities of the device and to study the resulting dynamics and performance of the gearbox.
The gearbox was also tested with a stiff shaft installed in place of the compliant device. When
using the stiff shaft, the torque splitting gear and combining pinion were precisely indexed to
each other while also maintaining precise tolerances for machining and assembly of the rest of
the gearbox. By testing both designs, the relationship between the precision of the assembly and
the torsional compliance required for the load path was quantified. Also, the dynamics and
performance of the gearbox with the torsionally stiff shaft was compared to that of the gearbox
with the compliant device.
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The device used to provide torsional compliance between the torque splitting gear and
combining pinion, an elastomeric load sharing device, is shown in figure 7. Alternate thin layers
of nitrile rubber and steel are stiff in the direction perpendicular to the laminates but allow large
deflections in the parallel direction. The laminates are located at an angle to the axis of
rotation on two halves that are bolted together. The laminates are compressed and a preload
force created as the two halves are drawn together during assembly. The magnitude of the
compressive preload force is important because it controls the magnitude of the friction force
between the spur gear hub and isolator halves. The torque on the gear is transmitted by the
frictional forces between these surfaces. Larger preloads create a larger torque capacity, but if
the preload is too large the material will yield and fail. The elastomeric torsional isolator shown
is about five times more compliant in torsion than an all steel assembly of the same dimensions.
The all steel versions were assembled carefully to properly index the two gears on the common
shaft.

EXPERIMENTAL RESULTS

Some typical experimental data is presented in figure 8. The torque carried in each of the
dual paths was measured and is plotted against the total combined torque. The data shown is
for testing with the compliant elastomeric torque splitting devices installed, but the trends
shown on the plot are also typical for testing with the stiff shaft installed.

If the torque split was ideal, all of the data of figure 8 would fall on the ideal line.
However, the slopes of the data do not match the slope of the ideal line. This indicates that the
total torsional stiffnesses of the dual power paths are not equal. In the case shown, the stiffness
of path number 2 is greater than path number 1. It is by chance that as the total combined
torque increases the torque split approaches the ideal case. It is equally likely that the slopes of
the experimental data could diverge as the total combined torque increased. This mismatching
of the stiffnesses of the dual paths is one possible source of an unacceptable torque split. A
second way that the experimental data does not match the ideal case is that path number 2
carries zero torque until the total combined torque is approximately 450 n-m (330 ft-lb). As the
combined torque was increased from 0 to 450 n-m, path number 1 absorbed all of the torque
while a backlash condition existed in path number 2. At 450 n-m of torque, enough deflections
had occurred to eliminate the backlash, and both power paths began to share the total torque.
The amount of torque required to absorb the backlash must be properly controlled to ensure an
acceptable torque split.

Both designs tested proved to be feasible. The mean torque carried by the dual paths was
equal within 5 percent for both designs. The relationship between the torsional compliance of
the dual paths and the precision required in assembly was quantified by the experiments. It was
demonstrated that precise indexing, tolerances, and assembly of a gearbox can be used with a
torsionally stiff shaft to produce an acceptable torque split. Although both designs were feasible,
the behavior observed during the two tests was different.

The transmission error measured at the helical pinion for each of the two tests at identical
operating conditions is shown in figure 9. One significant difference is that the magnitude of the
maximum peak-to-peak transmission error is more than 50 percent less when using the elasto-
meric isolator. Also, the speed at which the maximum transmission error occurred is different.
One would expect that the large compliance of the isolator would shift the resonance condition
to a lower frequency. The maximum response, however, occurred at a higher speed with the
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elastomeric isolator compared to the steel assembly. It is likely that the two peak responses are
two different mode shapes being excited within the speed range shown. Also significant is that
the transmission errors measured when operating away from a resonance condition were smaller
while testing with the elastomeric isolator installed. This suggests that the isolator may be
effective in reducing dynamic tooth loads.

Another observed difference in behavior was that the audible noise produced while testing
the elastomeric isolator was significantly less compared to that while testing the all steel
assemblies. This is consistent with the lower transmission errors and lower vibrations that were
measured with the elastomeric isolators installed. The elastomers provide a high degree of
damping not normally found in helicopter transmission components. More research and study is
needed to state conclusively whether the reduction in transmission error and noise was the result
of added compliance, added damping, or both.

The transmission error measurements and observed noise difference makes the torsional
isolator an attractive option. The isolator also would have the advantage of relaxing costly,
precise manufacturing tolerances. However, an unexpected and undesirable characteristic of the
present design was discovered during endurance testing. The torque split between the two power
paths changed slightly during the testing. It was later verified that the spur gear and isolator
halves that make up the isolator assembly had slipped with respect to one another, which
affected the torque split. The slippage was a result of nitrile rubber and steel having different
thermal expansion rates. For the isolator geometry used, as the temperature of the assembly
increased, the load in the laminated area increased. A test was conducted where a nitrile rubber
laminate was compressed by a predetermined amount and held at that dimension. The test
specimen was subjected to temperature cycles while being held at a constant compressed
dimension, and the compressive load in the laminate was measured. Figure 10 is a plot of the
test results. Note that during the first cycle over a time scale of 600 min, with the temperature
held at a constant 121 0C and the deflection held constant, the compressive load decreased by
about 30 percent. Using the results of these tests, the effect of the temperature cycles experi-
enced by the elastomeric torque splitter during testing in the one-half scale gearbox was
calculated. It was found that under repeated heating and cooling, the preload had decreased
significantly enough to reduce the torque capacity below the design torque, and slippage
occurred during testing. Furthermore, the assembled preload at room temperature could not be
adjusted to compensate for the desired operating temperature range without either reaching a
yield stress at the highest temperature or losing needed torque capacity at the lowest tempera-
ture. The elastomeric torque splitter, in its current configuration, does not have the needed
torque capacity over the entire range of temperatures required for a fielded system. However, an
alternate robust design using another elastomer material, a temperature compensating arrange-
ment, or an alternate structure and material for the shaft and hub may be possible.

NASA LEWIS SPLIT TORQUE GEARBOX

Description of Design

A helicopter drive system that includes a split torque concept has been developed and
studied cooperatively by the U.S. Army and NASA Lewis Research Center. This gearbox
arrangement was proposed and developed by G. White (ref. 2) under an Army/NASA contract
to approximate the power requirement and match the speed reduction requirement of a version
of the U.S Army's OH-58 helicopter main rotor transmission. The final two gear stages of the
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split torque design is shown in figure 3. This design relies on positioning of helical gears by a self
adjusting mechanism to obtain good load sharing. A main rotor transmission using this concept
was projected to be 25 percent lighter than a conventional design using a planetary output stage.

A split torque test gearbox using this design has been built and is being studied. The test
gearbox has been built for research of split torque concepts and is not being proposed as an
optimal solution for helicopter drive systems. The rated input power to the test gearbox is
373 kW (500 hp) at 8780 rpm. The input power is carried through the input helical pinion and
split between two helical gears at the first reduction stage. The power is combined at the second
and final reduction stage. Two spur pinions drive the output bull gear at 347.5 rpm. Thrust
loads are produced at each of the two helical meshes. These thrusts, which are proportional to
the torques carried by the gears, are reacted through a pivoted balance beam. The balance
beam acts to balance the thrust loads by coupling together the axial positions of the two helical
gear/spur pinion assemblies, which are labeled as compound shafts in figure 3. If the thrust
loads are balanced, the power is split evenly between the two parallel paths. This design has
been studied analytically to evaluate the load sharing mechanism and the gearbox's
characteristics.

Analytical Evaluation

The NASA Lewis split torque test gearbox has been studied analytically to determine the
loads and motions of the gearbox. Both static and dynamic analysis were completed. The
results of the static loads analysis are summarized in table I. Note that although the gearbox has
a symmetric geometry, the static loads of the two power paths are not the same. Also, the
direction of the radial force on a bearing is not in the direction of the line of action of the gear
mesh, as is the case for a pinion shaft that engages only one gear. This may significantly change
the coupling of the lateral and torsional vibration modes for that shaft through the bearings.
For example, table II shows the result of a calculation of a coupled bearing stiffnesses for bearing
number 7 of table I. Note that in the case of the gear mesh line of action being coincident with
the bearing force, the cross coupling terms are positive and fairly significant. However, for the
proposed design, the line of action and bearing force have different directions, and the cross
coupling, terms when defined in the direction of the line of action are negative. Since the loads
and stiffnesses of the two power paths are different, one should expect that the motions and
vibrations of the two paths could be significantly different.

The balance beam mechanism was evaluated using a static analysis. If one ignores
friction forces, then for the static condition the torque splits exactly between the two power
paths. However, there are friction forces at the bearing supports and contacting gear teeth that
resist the motion of the balancing beam. An analysis was done for an assumed coefficient of
friction = 0.005, a typical number for elastohydrodynamic lubrication (ref. 9). The torque split
condition that would create a sufficient difference in thrust forces to overcome friction was
calculated for varying helix angles and constant transverse tooth geometry for the helical mesh.
The operating conditions where balance beam motion is impending are plotted as a line in
figure 11. For small helix angles, the friction forces are very significant compared to the thrust
forces, and a large torque imbalance must exist to create motion of the balance beam. The
NASA Lewis split torque test gearbox as designed has a 60 helix angle. The results of the
static analysis indicates that the helix angle should be increased to overcome friction and ensure
good load sharing. Of course, one must keep in mind that the results shown depend on the
assumed coefficient of friction, which is difficult to estimate. Also, changing the helix angle may
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change the strength of the coupling of the axial and torsional vibration modes and therefore the
dynamic load sharing.

The gearbox was also evaluated by dynamic analysis. The analytical model is shown in
figure 12. Along with the inertia and stiffness elements shown in the figure, the model also
includes a damping element parallel to each stiffness element, an input inertia, and an output
inertia. The equations of motion were derived by the Lagrangian method. Gear mesh stiff-
nesses were modeled as time varying to account for both the number of teeth in contact and the
varying stiffness of each tooth pair as the gears rotate. Individual tooth pair stiffnesses were
calculated using the method of Cornel (ref. 10). The accumulative pitch error of the gears were
assumed to have a sine wave shape and were included in the gear mesh model. The simulated
loaded static transmission errors were a source of excitation for the system. Bearing supports
were modeled with complex stiffnesses with no damping. It was assumed that shafts moved in
pure translation and that Coulomb friction forces were negligible. The equations of motion were
first made nondimensional using characteristic parameters, then solved using a fifth/sixth order
Runge-Kutta method. The characteristic time was chosen to be the design speed of the pinion,
and therefore one dimensionless time represents one radian of rotation of the pinion. A com-
puter code based on this analytical model produces results typical of parametrically excited sys-
tems with high frequency characteristics restrained by a low frequency envelope (ref. 11).

An analysis was done for a simulated start-up from rest. The externally applied input and
output torques are shown in figure 13. As the torques are applied, the stiffness elements deflect.
Also, because the opposing torques are not balanced, the loading simulates acceleration from rest
or constant velocity. Although the loading to full torque is much more sudden than would occur
physically, full torque in 0.45 sec, this sudden loading was used to save computation time. Some
of the transient motions in the solution are due to this sudden loading of the system.

The simulated rotational motion of the output inertia in dimensionless coordinates is shown
in figure 14. The dimensionless coordinates are physical coordinates normalized using character-
istic parameters inherent to the gearbox. The output inertia accelerates from rest and has
reached a velocity of approximately 12 rpm in 1.5 sec. The rotational motion plots of the other
inertias, not shown, have similar shapes. Because the rigid body mode is a part of the simulated
motion, torsional vibrations are difficult to observe in such a plot. Therefore, the rigid body
mode was eliminated from the results by referencing all torsional displacements to the position
of the input inertia.

The dynamic angular motions of the pinion and bull gear with respect to the input inertia are
shown in figure 15 along with the static solution. Also, their lateral motions are plotted as shaft
orbits in figure 16. Note that the pinion has a large torsional vibration during start-up. The
frequency of torsional vibration for the pinion is approximately 37.5 Hz, which is the rotational
frequency of the compound shafts. The bull gear also has a small torsional vibration at one half
of the compound shaft frequency of 18.7 Hz. The accumulative pitch errors of the gears of the
compound shafts are the excitation source of these torsional vibrations. The bull gear is
overshooting the expected steady state mean torsional displacement in response to the sudden
ramp loading but the motion is stable. The shaft orbits shown in figure 16 are typical of all
lateral motions in that they are bound and stable. A study of all the motions indicate that the
transient response to the sudden loading is significant and that a drive system start-up from rest
has been reasonably simulated using ramp shaped forcing functions that accelerate the system.
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An analysis using a step function to start the system at time zero produced very large transient
motions not representative of realistic physical motions.

The analytical results were studied to evaluate the load sharing characteristics of the system.
The dynamic torques in the four shafts of the system along with torques for a static solution are
shown in figure 17. Note that the dynamic means follows the static solutions with some
torsional vibrations and overshoot at the end of the ramp loading for dimensionless time 400.
The plot of the torques of the compound shafts (fig. 17(c)) show excellent load sharing during
start-up in spite of a torsional vibration response to accumulative pitch errors. To further
evaluate the load balancing mechanism of this design, a second analysis was completed that was
identical to the first except the initial axial positions of the two compound shafts were offset
from their nominal positions. Therefore, the balance beam position was not zero at time equal
to zero. The rotation of the balance beam for the two cases are shown in figure 18. The
frequency of rotation is approximately 16.5 Hz. This frequency is not directly related to any
shaft rotational speed. Note that the motion for the case of an offset initial condition (18(b))
quickly approaches that of the nominal case. The magnitude of the balance beam rotations is
very small. The load sharing during start-up for the offset condition case is shown in figure 19.
The load sharing shown is typical of the entire solution. The dynamic load sharing is satisfac-
tory in that the torques are within about 5 percent of each other. It is interesting that a small
torque ripple at the input shaft frequency of 147.5 Hz appears in only one of the two compound
shaft torques. The load sharing for the case of nominal positions for the compound shafts was
even better than that shown in figure 19.

The dynamic response of the system to a start-up condition showed satisfactory load. sharing.
The accumulative pitch errors of the gears excited significant torsional vibration of the pinion
and smaller but noticeable vibrations in the other shafts. The balancing mechanism responds
quickly to an initial offset condition so long as friction is negligible. Although this analysis
predicts good load sharing, the recently completed static analysis with friction presented earlier
in this paper indicates that frictional forces are significant. These frictional forces were assumed
negligible in the dynamic analysis presented here. A dynamic analysis of any split torque design
that relies on axial motions to balance the torque split should include the frictional forces that
oppose axial motion to best evaluate the effectiveness of the design. While the introduction of
friction forces Lu the model may change the effectiveness of the balance mechanism, the effect of
friction could be minimized by increasing the helix angle of the pinion. Also, the basic vibra-
tional characteristics of any system are a property only of the masses, stiffnesses, damping, and
geometry of the design and not of the forces. Including frictional forces in the model may pro-
duce slightly different responses for a given input, but the frictional forces will not change the
significant vibration modes or frequencies of the system that were presented here.

SUMMARY OF RESULTS

Two designs that use split torque concepts have been studied to evaluate three different load
sharing concepts. The Sikorsky Aircraft Split Path Transmission design developed under the
Advanced Rotorcraft Transmission Program was studied. Two load sharing concepts for this
design were evaluated; (1) a torsionally compliant device, and (2) precise indexing and assembly
when using a conventional, torsionally stiff shaft. This design was studied experimentally. The
NASA Lewis Split Torque Gearbox was studied analytically to evaluate a self adjusting, thrust
balancing mechanism for load sharing.
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The following specific results were obtained from a study of the Sikorsky Aircraft design.

1. Although a split torque gearbox is geometrically symmetric, the loads and motions of
the two power paths are not.

2. Precise indexing, tolerancing, and assembly of a gearbox can be used with a torsionally
stiff shaft to produce an acceptable torque split.

3. An elastomeric torque splitting device that has a large compliance and damping
produced even better load sharing and lower levels of dynamic transmission error and noise.

4. While the elastomeric torque splitter has attractive characteristics, in its present
configuration it is not capable over the full range of operating temperatures for a fielded system.
However, an alternative robust design that has a large torsional compliance and damping for
load sharing may be possible.

The following specific results were obtained from a study of the NASA Lewis design.

1. For small helix angles, the friction forces that act to resist motion of the thrust
balance mechanism are significant. The static analysis suggests to increase the helix angle, but
the effect on the system's dynamics must also be considered.

2. A dynamic analysis of the start-up of a drive system from rest was reasonably
simulated using ramp shaped forcing functions that accelerated the system.

3. Assuming negligible friction, the dynamic analysis predicts that a split torque gearbox
with a thrust balance mechanism for load sharing exhibits excellent load sharing during start-up.
The balance beam mechanism responds quickly to an initial offset condition.

4. Dynamic analysis also predicts that the the accumulative pitch errors of the gears are
a significant source of torsional vibrations of the system.
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TABLE I.-RESULTS OF STATIC ANALYSIS

(Bearing Forces at Full Design Load)

Beaing load load' load direction

K.-N ,b degrees

1 3.57 (800) 24
2 4.57 (1030) 17
3 15.6 (3520) 137
4 6.05 (1360) 176
5 18.0 (4040) 174
6 14.3 (3210) 164
7 29.5 (6640) 335
8 16.2 (3650) 335

/- /-®

z S (Hidden)

112

I\



TABLE II. -BULL GEAR ROLLER BEARING

STIFFNESS MATRIX

Stiffness, K

________________________ kNxi 16]

X = direction of bearing force 1.99 1.21]
ý1.21 1.67

X = direction of gear mesh force 2.87 -0.651

-0.65 0.80.

Notation K = Kx KY

/-Input pinion

Figure 1.-SpIlt-torque geometry.
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Figure 2-Sp~t-torque design with epicyclic load sharing devie.
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Figure 3.--Pictodal view of a splt-torque helicopter tranemisalon with two power paths
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(a) Isometric view.

#1 &Vine#3 engine

15 000 rpm in

C. L
(b) Schematic plan.

Figure 4.-Advanced cargo aircraft splt path transmission.
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(a) Cross section.

(b) Spur gear and isolator component.
Figure 7.-Elastomenoc, torsionally compliant load sharing device.
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Figure 8.-Measured torque split with elastomeric Isolators.
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Figure 9.-Transmission error vs rpm for upper helical mesh with
avd without elatomeric load shaing device Instaled.
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Figure lO.-Measmred laminate comressiwe load vs time with temperature cy-
cling and constant deflection.
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Figure 11.-Load condition to create balance beam motion
(for friction cokicent = 0.005).
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Figure 12.-Splt-torque model. Note. not shown, damping elements. Input WWta, output huit
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Figure 13.-Extemally applied loads. f (a) Pinion.
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Figure 14.-Motion of output Inertia during start up. Figure 15.-Angular motions relative to input inertia.
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Figure. I &-Latara motion during start up. Figure. 1 7.--Shaft torques during start Wp
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Figure 1 8.-Balance beam rotation during start up. Figure 1 9.--Load sharing with initial position offset.
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